
The Incomplete
Lojban

Language
Chrestomathy included

John Woldemar Cowan

An unofficial publication, community edition (not by the
LLG)

Version geklojban-1.2.16, Generated 2024-03-10

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
1. Formal grammars ... 3

1.1. YACC Grammar of Lojban .. 3
Lojban Words Glossary..13
Lojban Words Index ...15
General Index ..17

Chapter 1
Formal grammars

1.1 YACC Grammar of Lojban
The following two listings constitute the formal grammar of Lojban. The first version is written in the
YACC language, which is used to describe parsers, and has been used to create a parser for Lojban
texts. This parser is available from the Logical Language Group. The second listing is in Extended
Backus-Naur Form (EBNF) and represents the same grammar in a more human-readable form. (In case
of discrepancies, the YACC version is official.) There is a cross-reference listing for each format that
shows, for each selma'o and rule, which rules refer to it.

The Lojban machine parsing algorithm is a multi-step process. The YACC machine grammar
presented here is an amalgam of those steps, concatenated so as to allow YACC to verify the syntactic
ambiguity of the grammar. YACC is used to generate a parser for a portion of the grammar, which is
LALR1 (the type of grammar that YACC is designed to identify and process successfully), but most of
the rest of the grammar must be parsed using some language-coded processing.

Step 1 – Lexing

From phonemes, stress, and pause, it is possible to resolve Lojban unambiguously into a stream
of words. Any machine processing of speech will have to have some way to deal with “non-Lojban”
failures of fluent speech, of course. The resolved words can be expressed as a text file using Lojban's
phonetic spelling rules.

The following steps assume that there is the possibility of non-Lojban text within the Lojban
text (delimited appropriately). Such non-Lojban text may not be reducible from speech phonetically.
However, step 2 allows the filtering of a phonetically transcribed text stream, to recognize such
portions of non-Lojban text where properly delimited, without interference with the parsing algorithm.

Step 2 – Filtering

From start to end, performing the following filtering and lexing tasks using the given order of
precedence in case of conflict:
i. If the Lojban word zoi (selma'o ZOI) is identified, take the following Lojban word (which should

be end delimited with a pause for separation from the following non-Lojban text) as an opening
delimiter. Treat all text following that delimiter, until that delimiter recurs after a pause, as

3

grammatically a single token (labelled “YACC rule #699 (p. 10)” in this grammar). There is no need
for processing within this text except as necessary to find the closing delimiter.

ii. If the Lojban word zo (selma'o ZO) is identified, treat the following Lojban word as a token labelled
“YACC rule #698 (p. 10)”, instead of lexing it by its normal grammatical function.

iii. If the Lojban word lo'u (selma'o LOhU) is identified, search for the closing delimiter le'u (selma'o
LEhU), ignoring any such closing delimiters absorbed by the previous two steps. The text between
the delimiters should be treated as the single token “YACC rule #697 (p. 10)”.

iv. Categorize all remaining words into their Lojban selma'o category, including the various delimiters
mentioned in the previous steps. In all steps after step 2, only the selma'o token type is significant
for each word.

v. If the word si (selma'o SI) is identified, erase it and the previous word (or token, if the previous text
has been condensed into a single token by one of the above rules).

vi. If the word sa (selma'o SA) is identified, erase it and all preceding text as far back as necessary to
make what follows attach to what precedes. (This rule is hard to formalize and may receive further
definition later.)

vii. If the word su (selma'o SU) is identified, erase it and all preceding text back to and including the
first preceding token word which is in one of the selma'o: NIhO, LU, TUhE, and TO. However, if
speaker identification is available, a SU shall only erase to the beginning of a speaker's discourse,
unless it occurs at the beginning of a speaker's discourse. (Thus, if the speaker has said something,
two adjacent uses of su are required to erase the entire conversation.

Step 3 – Termination

If the text contains a FAhO, treat that as the end-of-text and ignore everything that follows it.

Step 4 – Absorption of Grammar-Free Tokens

In a new pass, perform the following absorptions (absorption means that the token is removed from
the grammar for processing in following steps, and optionally reinserted, grouped with the absorbing
token after parsing is completed).
i. Token sequences of the form any - (ZEI - any) ..., where there may be any number of ZEIs, are

merged into a single token of selma'o BRIVLA.
ii. Absorb all selma'o BAhE tokens into the following token. If they occur at the end of text, leave

them alone (they are errors).
iii. Absorb all selma'o BU tokens into the previous token. Relabel the previous token as selma'o BY.
iv. If selma'o NAI occurs immediately following any of tokens UI or CAI, absorb the NAI into the

previous token.
v. Absorb all members of selma'o DAhO, FUhO, FUhE, UI, Y, and CAI into the previous token. All of

these null grammar tokens are permitted following any word of the grammar, without interfering
with that word's grammatical function, or causing any effect on the grammatical interpretation
of any other token in the text. Indicators at the beginning of text are explicitly handled by the
grammar.

Step 5 – Insertion of Lexer Lexemes

Lojban is not in itself LALR1. There are words whose grammatical function is determined by
following tokens. As a result, parsing of the YACC grammar must take place in two steps. In the first
step, certain strings of tokens with defined grammars are identified, and either
i. are replaced by a single specified “lexer token” for step 6, or

The Complete Lojban Language

4

ii. the lexer token is inserted in front of the token string to identify it uniquely.
The YACC grammar included herein is written to make YACC generation of a step 6 parser easy

regardless of whether a. or b. is used. The strings of tokens to be labelled with lexer tokens are found
in rule terminals labelled with numbers between 900 and 1099. These rules are defined with the lexer
tokens inserted, with the result that it can be verified that the language is LALR1 under option b.
after steps 1 through 4 have been performed. Alternatively, if option a. is to be used, these rules are
commented out, and the rule terminals labelled from 800 to 900 refer to the lexer tokens without the
strings of defining tokens. Two sets of lexer tokens are defined in the token set so as to be compatible
with either option.

In this step, the strings must be labelled with the appropriate lexer tokens. Order of inserting lexer
tokens IS significant, since some shorter strings that would be marked with a lexer token may be found
inside longer strings. If the tokens are inserted before or in place of the shorter strings, the longer
strings cannot be identified.

If option a. is chosen, the following order of insertion works correctly (it is not the only possible
order): A, C, D, B, U, E, H, I, J, K, M, N, G, O, V, W, F, P, R, T, S, Y, L, Q. This ensures that the longest
rules will be processed first; a PA+MAI will not be seen as a PA with a dangling MAI at the end, for
example.

Step 6 – YACC Parsing

YACC should now be able to parse the Lojban text in accordance with the rule terminals labelled
from 1 to 899 under option 5a, or 1 to 1099 under option 5b. Comment out the rules beyond 900 if
option 5a is used, and comment out the 700-series of lexer-tokens, while restoring the series of lexer
tokens numbered from 900 up.

%token
A_501 eks; basic afterthought logical connectives

%token
BAI_502 modal operators

%token
BAhE_503 next word intensifier

%token
BE_504 sumti link to attach sumti to a selbri

%token
BEI_505 multiple sumti separator between BE, BEI

%token
BEhO_506 terminates BE/BEI specified descriptors

%token
BIhI_507 interval component of JOI

%token
BO_508 joins two units with shortest scope

%token
BRIVLA_509 any brivla

%token
BU_511 turns any word into a BY lerfu word

%token
BY_513 individual lerfu words

%token
CAhA_514 specifies actuality/potentiality of tense

%token
CAI_515 afterthought intensity marker

%token
CEI_516 pro-bridi assignment operator

1.1 YACC Grammar of Lojban

5

%token
CEhE_517 afterthought term list connective

%token
CMENE_518 Lojbanized names; require consonant end,

as well as a pause before and after them
%token

CO_519 tanru inversion
%token

COI_520 vocative marker permitted inside cmevla; must
always be followed by pause or DOI

%token
CU_521 separator between head sumti and selbri

%token
CUhE_522 tense/modal question

%token
DAhO_524 cancel anaphora/cataphora assignments

%token
DOI_525 vocative marker

%token
DOhU_526 terminator for DOI-marked vocatives

%token
FA_527 modifier head generic case tag

%token
FAhA_528 superdirections in space

%token
FAhO_529 normally elided “done pause” to indicate end

of utterance string
%token

FEhE_530 space interval mod flag
%token

FEhU_531 ends bridi to modal conversion
%token

FIhO_532 marks bridi to modal conversion
%token

FOI_533 end compound lerfu
%token

FUhE_535 open long scope for indicator
%token

FUhO_536 close long scope for indicator
%token

GA_537 geks; forethought logical connectives
%token

GEhU_538 marker ending GOI relative clauses
%token

GI_539 forethought medial marker
%token

GIhA_541 logical connectives for bridi-tails
%token

GOI_542 attaches a sumti modifier to a sumti
%token

GOhA_543 pro-bridi
%token

GUhA_544 GEK for tanru units, corresponds to JEKs
%token

The Complete Lojban Language

6

I_545 sentence link
%token

JA_546 jeks; logical connectives within tanru
%token

JAI_547 modal conversion flag
%token

JOI_548 non-logical connectives
%token

KEhE_550 right terminator for KE groups
%token

KE_551 left long scope marker
%token

KEI_552 right terminator, NU abstractions
%token

KI_554 multiple utterance scope for tenses
%token

KOhA_555 sumti anaphora
%token

KU_556 right terminator for descriptions, etc.
%token

KUhO_557 right terminator, NOI relative clauses
%token

LA_558 name descriptors
%token

LAU_559 lerfu prefixes
%token

LAhE_561 sumti qualifiers
%token

LE_562 sumti descriptors
%token

LEhU_565 possibly ungrammatical text right quote
%token

LI_566 convert number to sumti
%token

LIhU_567 grammatical text right quote
%token

LOhO_568 elidable terminator for LI
%token

LOhU_569 possibly ungrammatical text left quote
%token

LU_571 grammatical text left quote
%token

LUhU_573 LAhE close delimiter
%token

ME_574 converts a sumti into a tanru_unit
%token

MEhU_575 terminator for ME
%token

MOhI_577 motion tense marker
%token

NA_578 bridi negation
%token

NAI_581 attached to words to negate them
%token

1.1 YACC Grammar of Lojban

7

NAhE_583 scalar negation
%token

NIhO_584 new paragraph; change of subject
%token

NOI_585 attaches a subordinate clause to a sumti
%token

NU_586 abstraction
%token

NUhI_587 marks the start of a termset
%token

NUhU_588 marks the middle and end of a termset
%token

PEhE_591 afterthought termset connective prefix
%token

PU_592 directions in time
%token

RAhO_593 flag for modified interpretation of GOhI
%token

ROI_594 converts number to extensional tense
%token

SA_595 metalinguistic eraser to the beginning of
the current utterance

%token
SE_596 conversions

%token
SEI_597 metalinguistic bridi insert marker

%token
SEhU_598 metalinguistic bridi end marker

%token
SI_601 metalinguistic single word eraser

%token
SOI_602 reciprocal sumti marker

%token
SU_603 metalinguistic eraser of the entire text

%token
TAhE_604 tense interval properties

%token
TEI_605 start compound lerfu

%token
TO_606 left discursive parenthesis

%token
TOI_607 right discursive parenthesis

%token
TUhE_610 multiple utterance scope mark

%token
TUhU_611 multiple utterance end scope mark

%token
UI_612 attitudinals, observationals, discursives

%token
VA_613 distance in space-time

%token
VAU_614 end simple bridi or bridi-tail

%token
VEhA_615 space-time interval size

The Complete Lojban Language

8

%token
VIhA_616 space-time dimensionality marker

%token
VUhO_617 glue between logically connected sumti

and relative clauses
%token

XI_618 subscripting operator
%token

Y_619 hesitation
%token

ZAhO_621 event properties – prospective, etc.
%token

ZEhA_622 time interval size tense
%token

ZEI_623 lujvo glue
%token

ZI_624 time distance tense
%token

ZIhE_625 conjoins relative clauses
%token

ZO_626 single word metalinguistic quote marker
%token

ZOI_627 delimited quote marker
%token

ZOhU_628 prenex terminator (not elidable)
%token

BIhE_650 prefix for high-priority MEX operator
%token

BOI_651 number or lerfu-string terminator
%token

FUhA_655 reverse Polish flag
%token

GAhO_656 open/closed interval markers for BIhI
%token

JOhI_657 flags an array operand
%token

KUhE_658 MEX forethought delimiter
%token

MAI_661 change numbers to utterance ordinals
%token

MAhO_662 change MEX expressions to MEX operators
%token

MOI_663 change number to selbri
%token

MOhE_664 change sumti to operand, inverse of LI
%token

NAhU_665 change a selbri into an operator
%token

NIhE_666 change selbri to operand; inverse of MOI
%token

NUhA_667 change operator to selbri; inverse of MOhE
%token

PA_672 numbers and numeric punctuation
%token

1.1 YACC Grammar of Lojban

9

PEhO_673 forethought (Polish) flag
%token

TEhU_675 closing gap for MEX constructs
%token

VEI_677 left MEX bracket
%token

VEhO_678 right MEX bracket
%token

VUhU_679 MEX operator
%token

any_words_697 a string of lexable Lojban words
%token

any_word_698 any single lexable Lojban words
%token

anything_699 a possibly unlexable phoneme string
The following tokens are the actual lexer tokens. The _900 series

tokens are duplicates that allow limited testing of lexer rules in the
context of the total grammar. They are used in the actual parser, where

the 900 series rules are found in the lexer.
%token lexer_

A_701 flags a MAI utterance ordinal
%token lexer_

B_702 flags an EK unless EK_BO, EK_KE
%token lexer_

C_703 flags an EK_BO
%token lexer_

D_704 flags an EK_KE
%token lexer_

E_705 flags a JEK
%token lexer_

F_706 flags a JOIK
%token lexer_

G_707 flags a GEK
%token lexer_

H_708 flags a GUhEK
%token lexer_

I_709 flags a NAhE_BO
%token lexer_

J_710 flags a NA_KU
%token lexer_

K_711 flags an I_BO (option. JOIK/JEK lexer tags)
%token lexer_

L_712 flags a PA, unless MAI (then lexer A)
%token lexer_

M_713 flags a GIhEK_BO
%token lexer_

N_714 flags a GIhEK_KE
%token lexer_

O_715 flags a modal operator BAI or compound
%token lexer_

P_716 flags a GIK
%token lexer_

Q_717 flags a lerfu_string unless MAI (then lexer_A)
%token lexer_

The Complete Lojban Language

10

R_718 flags a GIhEK, not BO or KE
%token lexer_

S_719 flags simple I
%token lexer_

T_720 flags I_JEK
%token lexer_

U_721 flags a JEK_BO
%token lexer_

V_722 flags a JOIK_BO
%token lexer_

W_723 flags a JOIK_KE
%token lexer_

X_724 null
%token lexer_

Y_725 flags a PA_MOI
%token lexer_A_905 : lexer_A_701 utt_ordinal_root_906

%token lexer_B_910 : lexer_B_702 EK_root_911
%token lexer_C_915 : lexer_C_703 EK_root_911 BO_508
%token lexer_D_916 : lexer_D_704 EK_root_911 KE_551

%token lexer_E_925 : lexer_E_705 JEK_root_926
%token lexer_F_930 : lexer_F_706 JOIK_root_931

%token lexer_G_935 : lexer_G_707 GA_537
%token lexer_H_940 : lexer_H_708 GUhA_544

%token lexer_I_945 : lexer_I_709 NAhE_583 BO_508
%token lexer_J_950 : lexer_J_710 NA_578 KU_556
%token lexer_K_955 : lexer_K_711 I_432 BO_508

%token lexer_L_960 : lexer_L_712 number_root_961
%token lexer_M_965 : lexer_M_713 GIhEK_root_991 BO_508
%token lexer_N_966 : lexer_N_714 GIhEK_root_991 KE_551
%token lexer_O_970 : lexer_O_715 simple_tense_modal_972

%token lexer_P_980 : lexer_P_716 GIK_root_981
%token lexer_Q_985 : lexer_Q_717 lerfu_string_root_986

%token lexer_R_990 : lexer_R_718 GIhEK_root_991
%token lexer_S_995 : lexer_S_719 I_545

%token lexer_T_1000 : lexer_T_720 I_545 simple_JOIK_JEK_957
%token lexer_U_1005 : lexer_U_721 JEK_root_926 BO_508
%token lexer_V_1010 : lexer_V_722 JOIK_root_931 BO_508

%token lexer_W_1015 : lexer_W_723 JOIK_root_931 KE_551
%token lexer_X_1020 null

%token lexer_Y_1025 : lexer_Y_725 number_root_961 MOI_663

1.1 YACC Grammar of Lojban

11

The Complete Lojban Language

12

Lojban Words Glossary
All definitions in this glossary are brief and unofficial. Only the published dictionary is a truly official reference
for word definitions. These definitions are here simply as a quick reference.
le'u

placeholder definition
lo'u

placeholder definition
sa

placeholder definition
si

placeholder definition

su
placeholder definition

zo
placeholder definition

zoi
placeholder definition

13

The Complete Lojban Language

14

Lojban Words Index
le'u, 4
lo'u, 4
sa, 4
si, 4

su, 4
zo, 4
zoi, 3

15

The Complete Lojban Language

16

General Index

17

	The Incomplete Lojban Language
	Chrestomathy included
	John Woldemar Cowan
	An unofficial publication, community edition (not by the LLG)

	Chapter 1Formal grammars
	1.1 YACC Grammar of Lojban
	Step 1 – Lexing
	Step 2 – Filtering
	Step 3 – Termination
	Step 4 – Absorption of Grammar-Free Tokens
	Step 5 – Insertion of Lexer Lexemes
	Step 6 – YACC Parsing

	Lojban Words Glossary
	Lojban Words Index
	General Index

