
Copyright 2003-05 John Cowan under the GNU GPL
1

Describing Document
Types: The Schema
Languages of XML

Part 2
John Cowan

Copyright 2003-05 John Cowan under the GNU GPL
2

Copyright
• Copyright © 2005 John Cowan
• Licensed under the GNU General Public License
• ABSOLUTELY NO WARRANTIES; USE AT YOUR

OWN RISK
• Black and white for readability
• The Gentium font available at

http://www.sil.org/~gaultney/gentium

Copyright 2003-05 John Cowan under the GNU GPL
3

Part 2 Abstract
This part of the tutorial is entirely about W3C XML
Schema Definition Language (XSD), also called XML
Schema. XSD is a very complex standard with lots of
details and special rules. This presentation attempts you
to familiarize you with most of the concepts and
terminology of XSD so that you can understand what
people are talking about when they talk about it. It's not
intended to teach you to write new schemas from
scratch, although it probably makes it easier to learn to
do that.

Copyright 2003-05 John Cowan under the GNU GPL
4

• Introduction (6)
• The invoice

example, again
(12)

• Content models
(14)

• Simple types (9)
• Namespaces (10)
• Wildcards (8)

• Derived types (14)
• Identity constraints

(10)
• Other details (7)
• Summaries (10)
• Datatypes (11)
• Facets (13)

Copyright 2003-05 John Cowan under the GNU GPL
5

INTRODUCTION

Copyright 2003-05 John Cowan under the GNU GPL
6

Why W3C XML Schema?
• It's a W3C Recommendation
• More tools (and tool vendors) support it

than support RELAX NG
• There are many worthy schemas already

written in it
• It's there

Copyright 2003-05 John Cowan under the GNU GPL
7

Problems of XSD
• It has a large variety of arbitrary and

hard-to-remember limitations
• It was designed by a committee
• It has no compact syntax

Copyright 2003-05 John Cowan under the GNU GPL
8

But wait!
• This presentation will use the compact

syntax designed by Kilian Stillhard
• There is nothing official about it
• It isn't even widely used
• But:

– It's related to the RELAX NG compact
syntax

– It lets me fit examples on a slide
– Open-source conversion software is

available

Copyright 2003-05 John Cowan under the GNU GPL
9

Types
• The notion of pattern in RELAX NG is

replaced in XSD by the similar but not
identical notion of type

• Every element and attribute has a type,
either simple or complex

• Types can be given names which are
then accessible from other XSD
schemas

Copyright 2003-05 John Cowan under the GNU GPL
10

Simple types
• A simple type corresponds to a RELAX

NG datatype
– Attribute values are simple types
– Element content can be simple types

• Elements with simple types must have
only character content, no child
elements or attributes

Copyright 2003-05 John Cowan under the GNU GPL
11

Complex types
• An element with complex type with

simple content has character data that
represents a simple type, plus attributes

• An element with complex type with
complex content has child elements (with
or without character data), or attributes,
or both

Copyright 2003-05 John Cowan under the GNU GPL
12

THE INVOICE EXAMPLE,
AGAIN

Copyright 2003-05 John Cowan under the GNU GPL
13

An Invoice in XML
<invoice number="640959-0" date="2002-03-12">
 <soldTo>
 <name>Reuters Health Information</name>
 <address>45 West 36th St. New York NY 10018</address>
 </soldTo>
 <shipTo>
 <name>Reuters Health Information</name>
 <address>45 West 36th St. New York NY 10018</address>
 </shipTo>
 <terms>Net 10 days</terms>
 <item ordered="6" shipped="6" unitPrice="7.812">
 Binder, D-ring, 1.5"</item>
 <item ordered="4" shipped="2" backOrdered="2"
 unitPrice="3.44">Fork, Plastic, Heavy, Medium</item>
</invoice>

Copyright 2003-05 John Cowan under the GNU GPL
14

The Russian Doll schema (1)
element invoice {
 (soldTo, shipTo, terms, item*)
 element soldTo {
 (name, address)
 element name { xs:string }
 element address { xs:string }
 }
 element shipTo {
 (name, address)
 element name { xs:string }
 element address { xs:string }
 }
 element terms { xs:string }

Copyright 2003-05 John Cowan under the GNU GPL
15

The Russian Doll schema (2)
 element item {
 xs:string
 required attribute unitPrice { xs:decimal }
 required attribute ordered { xs:integer }
 required attribute shipped { xs:integer }
 attribute backOrdered { xs:integer }
 }
 attribute number { xs:string }
 attribute date { xs:date }
}

Copyright 2003-05 John Cowan under the GNU GPL
16

Things to note
• Most of this looks pretty familiar!
• The content model must be in

parentheses, as in DTDs, and is
separate from the element sub-
declarations (declarations aren't
patterns)

• We use xs:string instead of text for
elements with unconstrained simple
content

Copyright 2003-05 John Cowan under the GNU GPL
17

Declaring attributes
• Attribute declarations are inside an

element declaration but aren't part of the
content model

• By convention, attribute declarations
appear at the end (in the XML syntax,
they are required to)

• Attributes are optional unless marked
required

Copyright 2003-05 John Cowan under the GNU GPL
18

The Salami Slice schema (1)
element invoice {
 (soldTo, shipTo, terms, item*)
 required attribute number { xs:string }
 required attribute date { xs:date }
 }
element soldTo {
 (name, address)
 }
element shipTo {
 (name, address)
 }
element terms { xs:string }

Copyright 2003-05 John Cowan under the GNU GPL
19

The Salami Slice schema (2)
element item {
 xs:string
 required attribute unitPrice { xs:decimal }
 required attribute ordered { xs:integer }
 required attribute shipped { xs:integer }
 attribute backOrdered { xs:integer }
 }
element name { xs:string }
element address { xs:string }

Copyright 2003-05 John Cowan under the GNU GPL
20

Local vs. global declarations
• Declarations at the top level are global
• Declarations embedded in other

declarations are local to those
declarations

• Names in a content model match a local
declaration if there is one, a global
declaration if not

• The document element must have a
global declaration

Copyright 2003-05 John Cowan under the GNU GPL
21

The Venetian Blind schema
(1)

element invoice {invoice}
complexType invoice {
 (soldTo {name-addr},
 shipTo {name-addr},
 terms {xs:string},
 item {item}*)
 required attribute number {xs:string}
 required attribute date {xs:date}
 }

Copyright 2003-05 John Cowan under the GNU GPL
22

The Venetian Blind schema
(2)

complexType item {
 xs:string
 attribute unitPrice {xs:decimal}
 required attribute ordered {xs:integer}
 required attribute shipped {xs:integer}
 attribute backOrdered {xs:integer}
 }
complexType name-addr {
 (name {xs:string}, address {xs:string})
 }

Copyright 2003-05 John Cowan under the GNU GPL
23

Defining Types
• Define a global name for a type
• Local type definitions are not allowed
• Type names don't conflict with element

or attribute names
• An element name in a content model can

be followed by a type name in braces to
specify the element's type

Copyright 2003-05 John Cowan under the GNU GPL
24

Naming conflicts

• Global element, attribute, and type
names do not conflict

• Complex and simple type names do
conflict

• Simple type names you specify are in a
different namespace from the built-in
type names, and so do not conflict

• A local element or attribute shadows a
global element or attribute with the
same name

Copyright 2003-05 John Cowan under the GNU GPL
25

CONTENT MODELS

Copyright 2003-05 John Cowan under the GNU GPL
26

Content models

• Elements with complex content have a
content model specifying the child
elements (not also the attributes, as in
RELAX NG)

• A content model contains one or more
element names wrapped in parentheses
and separated by , or | or &

Copyright 2003-05 John Cowan under the GNU GPL
27

Content models

• The element names can be followed by
a type name in braces

• Content models can be nested
• XSD content models provide only

modest advances over DTD content
models:
– occurrence constraints other than ?, *, and
+

– the & connector (not as powerful as
RELAX NG's)

– mixed content models aren't so limited

Copyright 2003-05 John Cowan under the GNU GPL
28

Element content

• Specify a content model in parentheses
• Add local element declarations as

needed
– elements referenced in the content model

are assumed to be global if undeclared
• Add local attribute declarations or

references to global attribute
declarations as needed

Copyright 2003-05 John Cowan under the GNU GPL
29

Element content

• Example:
element timestamp {
 (date, time)
 element date { xs:date }
 element time { xs:time }
 attribute verified
 { xs:boolean}
 }

Copyright 2003-05 John Cowan under the GNU GPL
30

Complex types
with simple content

• Specify a simple type
• Add local attribute declarations or

references to global attribute
declarations as needed

• Example:
element title {
 xs:string
 attribute xml:lang
 attribute sub { xs:boolean }
 }

Copyright 2003-05 John Cowan under the GNU GPL
31

Mixed content

• Add the keyword mixed in front of the
content model outside the parentheses

• Example:
element p {
 mixed (emph)
 optional attribute class
 { xs:Name }
 }

• optional is optional on attributes

Copyright 2003-05 John Cowan under the GNU GPL
32

Empty content

• Omit the content model and use the
keyword empty

• Example:
element marker { empty }

• Attributes are still allowed

Copyright 2003-05 John Cowan under the GNU GPL
33

Nested element declarations
• You can write a local element declaration

nested directly inside a content model
(as opposed to inside the element or
complex type declaration that contains
the content model)

• It must be wrapped in braces
• Not clear why you'd do this, but it's

possible
• The XML syntax does not distinguish

Copyright 2003-05 John Cowan under the GNU GPL
34

Choice and sequence

• Choice and sequence are exactly the
same as in DTDs

• Conceptually more limited than RELAX
NG, where they can be used in any
pattern, not just a content model

• Complex example:
((a | b, c | d) | e) means
either a choice of a or b elements
followed by a choice of c or d elements,
or else an e element by itself.

Copyright 2003-05 John Cowan under the GNU GPL
35

Occurrence constraints

• Specified in a content model to give the
number of times an element can appear

• The familiar ?, *, and + are used in the
compact syntax

• XSD also allows specifying the number
of permitted repetitions

• Attributes do not use occurrence
constraints; they are either required
or optional (which is the default)

Copyright 2003-05 John Cowan under the GNU GPL
36

Occurrence constraints

• You can specify a fixed number of
repetitions using [5].

• For a variable number, use [3,7].
• For a lower limit only, use [3,].
• In the XML syntax, the attributes
minOccurs and maxOccurs are used
for all occurrence constraints
– Both attributes default to 1
– Use "unbounded" to specify no upper

limit

Copyright 2003-05 John Cowan under the GNU GPL
37

All

• The & connector (pronounced “all”) is
severely restricted in XSD

• It can only connect single element
names with either:
– no occurrence constraint or
– ? occurrence constraint

• It can only appear at the top level of an
element declaration or complex type
definition

• No interleaving is allowed

Copyright 2003-05 John Cowan under the GNU GPL
38

Named model groups

• You can give a name to a content
model (with or without an occurrence
constraint) using a group definition

• Example:
group abc { (a | b | c)* }

• To refer to a named content model from
another content model, use @abc

• Group definitions must be global

Copyright 2003-05 John Cowan under the GNU GPL
39

Named attribute groups

• Attribute groups are the attribute-related
analogue of content model groups

• They name a related set of attributes
used by more than one element or
complex type

• Example:
attributeGroup i18n {
 attribute dir { xs:string }
 attribute xml:lang
 { xs:language }
 }

Copyright 2003-05 John Cowan under the GNU GPL
40

Named attribute groups

• To refer to an attribute group from
another declaration or definition, use
simply attributeGroup i18n, with
no braces following

• Named attribute group definitions must
be global

• Attribute groups can contain references
to other attribute groups

Copyright 2003-05 John Cowan under the GNU GPL
41

SIMPLE TYPES

Copyright 2003-05 John Cowan under the GNU GPL
42

Simple types

• Simple types are used for two purposes:
– The type of an attribute
– The type of an element with no child

elements
• So far we have only seen simple types

that are built in to XSD: xs:string,
xs:integer, xs:date, etc.

• Support for the xs: prefix is hard-coded
in the compact syntax

Copyright 2003-05 John Cowan under the GNU GPL
43

Restricted simple types
• Each built-in type has facets that specify

how it can be constrained: for example,
– Numeric types can be limited in range
– String types can be limited in length

• To specify a restricted simple type, follow
the type name with facets wrapped in
braces

• The complete list of facets and their
specific syntax will be discussed later

Copyright 2003-05 John Cowan under the GNU GPL
44

Examples of restricted types

• xs:integer {[-10, +10]} is an
integer between -10 and +10 inclusive

• xs:string {"foo", "bar",
"baz"} is a string that is either "foo",
"bar", or "baz"

• xs:string {length = 5} is a string
with exactly five characters

Copyright 2003-05 John Cowan under the GNU GPL
45

List and union types

• list {xs:integer} specifies a
simple type that consists of whitespace-
separated integers

• Lists must specify just one simple type
• union {xs:positiveInteger,
xs:negativeInteger} represents an
integer that is either negative or positive
(i.e. a non-zero integer)

Copyright 2003-05 John Cowan under the GNU GPL
46

Named simple type definitions

• A simple type definition lets you assign
a name to a (generalized) simple type: a
restricted type, a list, or a union

• Example:
simpleType codeword {
 xs:string {length = 5}
 }

• Simple type definitions must be global

Copyright 2003-05 John Cowan under the GNU GPL
47

Named simple type definitions

• The names of any simple types you
define can be used just like the names
of built-in simple types

• In particular, they can be restricted
further

• If you want to prevent a particular facet
of your type from being further
restricted, precede the facet
specification with the keywords fixed
or fixed-maximum or fixed-
minimum

Copyright 2003-05 John Cowan under the GNU GPL
48

Recursive simple types
• A simple type definition with no name

can be used recursively inside a simple
type specification

• Example:
list {
 simpleType xs:string
 { length = 5 }
 }

Copyright 2003-05 John Cowan under the GNU GPL
49

Fixed and default values
• A fixed or default value can be specified

for an attribute (as in DTDs) or for an
element with a simple type (which DTDs
cannot do)

• To specify a value, append = "value"
(for a fixed value) or <= "value" (for a
default value) to:
– a local element declaration
– an attribute declaration (local or global)

Copyright 2003-05 John Cowan under the GNU GPL
50

Fixed and default values
• Examples:
element edit {
 xs:string <= "no"}
attribute country {
 xs:string = "US"}

• A default attribute will be supplied only if
the attribute is not present

• Default element content will be supplied
only if the element is present but empty

Copyright 2003-05 John Cowan under the GNU GPL
51

NAMESPACES

Copyright 2003-05 John Cowan under the GNU GPL
52

The target namespace

• The global declarations and definitions
in a single XSD schema must define
names that all belong to the same
namespace, or else belong to no
namespace

• To declare this namespace (called the
target namespace), use a
targetNamespace declaration at the
top of the schema specifying the
namespace URI

Copyright 2003-05 John Cowan under the GNU GPL
53

Importing

• It's possible for elements and attributes
to have types or child elements or both
that belong to namespaces other than
the target namespace

• Such namespaces must first be
declared and then their schemas must
be imported

• Then anything declared using a global
declaration or definition in the imported
schema may be used in the current
schema with a proper prefix

Copyright 2003-05 John Cowan under the GNU GPL
54

Importing

• Example:
namespace html
"http://www.w3.org/1999/html"
import "xhtml11.xsd"
namespace
"http://www.w3.org/1999/html"

• namespace declarations turn into
xmlns:foo declarations in the XML
syntax

Copyright 2003-05 John Cowan under the GNU GPL
55

Unqualified local declarations
• A local element declaration without a

prefix declares an element in the target
namespace

• A local attribute declaration without a
prefix declares an attribute in no
namespace

• To override these rules, use the
keywords qualified and
unqualified before the name being
declared

Copyright 2003-05 John Cowan under the GNU GPL
56

Changing the qualification
rules

• The qualification rules can be changed
by specifying the following options at the
top of the schema:
– elementDefault unqualified
– attributeDefault qualified

Copyright 2003-05 John Cowan under the GNU GPL
57

Changing the qualification
rules

• Warning: in the XML syntax, local
element declarations are unqualified by
default!

• To override this rule (which the compact
syntax automatically does), add the
attribute elementDefault =
"unqualified" to the schema
(document) element

Copyright 2003-05 John Cowan under the GNU GPL
58

Multi-file schemas

• The include declaration can be used to
incorporate definitions from another file

• include declarations must appear at
the top of the schema but after any
namespace declarations

Copyright 2003-05 John Cowan under the GNU GPL
59

Multi-file schemas
• Included definitions must specify one of:

– the same target namespace as the base
schema

– no target namespace when the base
schema has no target namespace

– no target namespace when the base
schema specifies a target namespace

• In the third case (a "chameleon schema")
the included names take on the target
namespace of the base

Copyright 2003-05 John Cowan under the GNU GPL
60

Redefinition

• The redefine declaration is like the
include declaration, but allows
replacement of selected declarations

• Put the new declarations in braces after
the URI of the schema to be included

• Only simple and complex types, content
model groups, and attribute groups can
be redefined

Copyright 2003-05 John Cowan under the GNU GPL
61

Global attributes gotcha
• If a schema has a target namespace,

then by default global attributes are in
that namespace

• This means that they must be prefix-
qualified in the instance document

• Global attributes therefore are not
equivalent to local attribute declarations
in different elements (unlike in RNG)

Copyright 2003-05 John Cowan under the GNU GPL
62

WILDCARDS

Copyright 2003-05 John Cowan under the GNU GPL
63

Element wildcards

• An element wildcard marks a point in a
content model where anything may
appear

• Element wildcards must always be
enclosed in braces to delineate them
from the rest of the content model

• The simplest element wildcard is {skip
any}, which means that any element
can appear here with no constraints

Copyright 2003-05 John Cowan under the GNU GPL
64

Element wildcards

• An alternative is {strict any}, which
also allows any element but requires
that it has a defined type and is valid
against it

• {lax any} is a compromise:
– if the element has a schema definition,

treat it as {strict any}
– otherwise as {skip any}

• A wildcard can be followed by an
occurrence constraint, most often *

Copyright 2003-05 John Cowan under the GNU GPL
65

Attribute wildcards

• Attribute wildcards can be used in an
element, complex type, or attribute
group declaration

• They allow any number of attributes
with any name to appear in an element

• No braces or occurrence constraints
required or allowed

Copyright 2003-05 John Cowan under the GNU GPL
66

Attribute wildcards

• The keyword is anyAttribute rather
than any

• skip, strict, and lax are all
available, with the same meanings as in
any, but skip probably makes the
most sense

Copyright 2003-05 John Cowan under the GNU GPL
67

Namespace-specific wildcards
• An element or attribute wildcard can be

made namespace-specific by following it
with the keyword namespace and one or
more URIs (in quotes, comma-
separated)

• The URIs specify the possible valid
namespaces for the element or
attributes, as the case may be, that can
appear

Copyright 2003-05 John Cowan under the GNU GPL
68

Namespace-specific wildcards
• You can also use the following keywords

(without quotes) in place of URIs:
– ##targetNS means the target namespace
– ##local means elements or attributes

without a namespace
– ##other means all namespaces except the

target namespace
• Note that these keywords are not URIs,

which is necessary for the XML syntax

Copyright 2003-05 John Cowan under the GNU GPL
69

Wildcard examples

• (start, {skip any}*) allows a
start element followed by any number
of other unvalidated elements

• {strict any namespace
"http://www.w3.org/1999/xhtml"
}* allows any valid elements from the
XHTML namespace

Copyright 2003-05 John Cowan under the GNU GPL
70

Wildcard examples
• lax anyAttribute namespace
"http://www.w3.org/1999/xlink/
" allows any attributes from the XLink
namespace

• The validator will validate the attributes if
it has declarations for them, but will
remain silent if it does not

Copyright 2003-05 John Cowan under the GNU GPL
71

DERIVED TYPES

Copyright 2003-05 John Cowan under the GNU GPL
72

Type derivation
• In XSD, type derivation is a relationship

between named types
• Complex types can be derived by

extension or by restriction
• Simple types can be derived only by

restriction

Copyright 2003-05 John Cowan under the GNU GPL
73

Extending complex types

• A derived type extends its base type if it
has all the same elements and
attributes plus some new ones

• Syntax: complexType derived
 extends base { ... }

• Only the new elements and attributes
appear inside the braces

• New elements are required to follow old
ones in the instance

Copyright 2003-05 John Cowan under the GNU GPL
74

Restricting complex types

• A derived type restricts its base if it has
fewer child elements (or occurrences of
them), or fewer attributes, or both, than
its base type

• Syntax: complexType derived
 restricts base { ... }

• All the child elements valid in the
restricted type must appear within the
braces

Copyright 2003-05 John Cowan under the GNU GPL
75

Restricting complex types

• An optional child element or attribute in
the base type may become required in
the derived type

• In general, an occurrence constraint can
be tightened in the derived type by
having:
– a greater number of minimum repetitions,

and/or
– a lesser number of maximum repetitions

Copyright 2003-05 John Cowan under the GNU GPL
76

Special cases
• A complex type with simple content is

actually an extension of a simple type
• An empty complex type is actually a

restriction of the built-in complex type
anyType to have no child elements

• Simple types can be restricted by adding
new facets or narrowing existing ones;
they cannot be extended

Copyright 2003-05 John Cowan under the GNU GPL
77

xsi:type
• Attributes in the xsi: namespace are

placed in the instance to give additional
information to schema validators
processing that instance

• The value of xsi:type is the type of the
element in which it appears

• xsi:type is useful in certain special
cases

Copyright 2003-05 John Cowan under the GNU GPL
78

Abstract types

• An abstract type (marked by the word
abstract before the name of the type)
is one that can't have any elements or
attributes declared to use it

• They correspond roughly to abstract
classes in object-oriented programming

• Abstract types are useful as base types
for non-abstract derived types

Copyright 2003-05 John Cowan under the GNU GPL
79

Controls on derivation

• A final type is one which cannot have
any derived types

• Syntax: use the keyword final before
the type name

• The schema option default final
(at the top of the schema) makes all
types in the schema final

Copyright 2003-05 John Cowan under the GNU GPL
80

Controls on derivation

• To control derivation by extension and
restriction separately, use the keywords
final-extension and final-
restriction instead

• These keywords can be used on
individual type declarations or in
default options at the top of the
schema

Copyright 2003-05 John Cowan under the GNU GPL
81

Derived types in instances

• If the schema says that a particular
element must be of a certain type, the
instance may in fact contain an element
that matches a derived type instead

• However, the actual type of the element
must be marked using the xsi:type
attribute in the instance

• This is the only way to use an element
declaration involving an abstract type

Copyright 2003-05 John Cowan under the GNU GPL
82

Blocking the use of derived
types

• You can use the keywords block,
block-extension, and block-
restriction to prevent elements of
derived types from being used in the
instance

• These keywords are exactly analogous
to final, final-extension, and
final-restriction

Copyright 2003-05 John Cowan under the GNU GPL
83

Substitution groups

• An element can be declared as
substitutable for another element,
known as its head element

• All elements substitutable for the same
head constitute a substitution group

• The relationship of an element in a
substitution group to its head element is
analogous to the relationship of a
derived type to its base type

Copyright 2003-05 John Cowan under the GNU GPL
84

Substitution groups

• Syntax:
element s substitutes h
 { ... }

• The type of an element in a substitution
group must be:
– the same as the type of the head, or
– derived from the type of the head

Copyright 2003-05 John Cowan under the GNU GPL
85

Abstract elements

• Abstract elements are the substitution-
group analogue of abstract types

• Abstract elements can be declared in
the schema but can't appear in the
instance

• Other members of the substitution
group can appear in the instance in
place of the abstract element

• Syntax: use abstract before the
element name

Copyright 2003-05 John Cowan under the GNU GPL
86

Substitutions in instances

• If the schema calls for a particular
element, any other element in the
substitution group may appear instead

• No magic attribute marker is required in
this case

• The keyword block-substitution
prevents the substitution of a particular
element in the instance, analogous to
the keyword block for derivation

Copyright 2003-05 John Cowan under the GNU GPL
87

IDENTITY CONSTRAINTS

Copyright 2003-05 John Cowan under the GNU GPL
88

Uniqueness

• A unique declaration is placed inside
an element declaration

• It specifies a constraint that certain
descendant elements of the declared
elements or their attributes must all
have distinct values in the document

• The descendant elements or attributes
are specified by simplified XPaths.

Copyright 2003-05 John Cowan under the GNU GPL
89

Uniqueness

• Example declaration:
unique uniqueNames
 field "name" in "person"

• This constraint requires:
– that the values of the name child elements

(the fields) ...
– of any person elements (the selection) ...
– which are children of a specific persons

element (the constraint root) ...
– are all different.

Copyright 2003-05 John Cowan under the GNU GPL
90

Uniqueness

• Selector and field elements that are not
descendants of a constraint root are not
involved in the constraint

• Each distinct constraint root element in
the document has its own space of
unique values

• Uniqueness declarations require you to
specify a name, which is used only for
documentation purposes

Copyright 2003-05 John Cowan under the GNU GPL
91

Uniqueness example
<persons>
<person>
 <name>John Cowan</name>
 ...
</person>
<person>
 <name>George Bush</name>
 ...
</person>

Copyright 2003-05 John Cowan under the GNU GPL
92

Multiple-field uniqueness
• You can specify multiple fields whose

values must be jointly unique
• Example:
unique uniqueNames
 field "firstname",
 "lastname" in "person"

• The combined first name and last name
values must be unique for each person

Copyright 2003-05 John Cowan under the GNU GPL
93

XPath limitations
• The basic selector XPath is a chain of

simple name tests, like "foo",
"foo/bar", "foo/*/bar"

• You can also have ".//foo/bar",
allowing the selection elements to be an
arbitrary descendant of the constraint
root

• You can specify multiple selector XPaths
by combining them with |inside the
quotes

Copyright 2003-05 John Cowan under the GNU GPL
94

XPath limitations
• Field XPaths have much the same

restrictions as selector XPaths
• The last step may be an attribute,

prefixed with @ as usual
• A field XPath may not contain |

Copyright 2003-05 John Cowan under the GNU GPL
95

Keys and references

• Keys and key references are a
generalized form of IDs and ID
references from DTDs

• A key declaration has the same syntax
and semantics as a unique
declaration, except that the fields must
exist in each selection (not just be
unique when they do exist)

• A keyref declaration says that the
values of specified elements and
attributes must be equal to the values
specified by a specified key or unique
declaration

Copyright 2003-05 John Cowan under the GNU GPL
96

Keys and references

• A keyref declaration matches a key or
unique declaration with the same
constraint root (or a descendant of it)
and a matching name

• Example: To make sure every person's
manager is also a person, use
key nameKey field
 "name" in "person"
keyref managerRef field
 "manager" in "person"

Copyright 2003-05 John Cowan under the GNU GPL
97

Keys and references

• The name of a keyref declaration is
for documentation purposes only

• Attributes with the simple types xs:ID
and xs:IDREF are treated like keys
and key references, but obey DTD
rules:
– all IDs must be unique in the document
– an IDREF can refer to any ID in the

document

Copyright 2003-05 John Cowan under the GNU GPL
98

OTHER DETAILS

Copyright 2003-05 John Cowan under the GNU GPL
99

A few lexical details
• Strings, URIs, and XPaths must be

wrapped in double quotation marks
• \", \n, \r, \t in strings mean what you

expect
• Names that are the same as compact-

syntax keywords must be preceded by \

Copyright 2003-05 John Cowan under the GNU GPL
100

Annotations

• XML Schema allows two kinds of
annotations, documentation and
application information

• Both can contain arbitrary content
• A comment wrapped in /* and */

becomes a documentation annotation
for the next declaration

• The compact syntax can't represent
complex documentation or application
information

Copyright 2003-05 John Cowan under the GNU GPL
101

Version specification
• You can specify the version of a

particular schema using a version
declaration at the top of the schema

• Example:
version "1.2b"

• This is for documentation purposes only

Copyright 2003-05 John Cowan under the GNU GPL
102

The schemaLocation hint

• The attribute xsi:schemaLocation
may be used in the document element
of an instance

• Its value is one or more pairs of URIs
separated by spaces

• Each pair consists of a namespace URI
followed by the URI where a schema for
that namespace may be found

Copyright 2003-05 John Cowan under the GNU GPL
103

The schemaLocation hint

• The location of a schema for elements
in no namespace is specified by the
analogous attribute
xsi:noNamespaceSchemaLocation

• Both attributes are merely hints which a
schema validator may ignore
– Jing ignores them, for example

• Attributes in the xsi: namespace are
not themselves validated against a
schema

Copyright 2003-05 John Cowan under the GNU GPL
104

Nil values

• Nil is the XSD analog of the database
null value

• It can be important to distinguish
between:
– a missing element
– an empty element
– a nil-value element

• Elements that can be nilled are marked
by preceding the declaration with
nillable

Copyright 2003-05 John Cowan under the GNU GPL
105

Nil values

• Nil elements are marked in the instance
with the attribute xsi:nil="true"

• A nil element must be empty no matter
what its declaration says

• Nil elements can have attributes,
however

• (Note: RNG can handle nils by providing
a choice between the real content
model and attribute xsi:nil
{ "true" })

Copyright 2003-05 John Cowan under the GNU GPL
106

SUMMARIES

Copyright 2003-05 John Cowan under the GNU GPL
107

Summary of schema options
• All these must appear (if at all) at the top

of the schema before anything else:
– targetNamespace
– namespace
– default
– elementDefault
– attributeDefault
– version

Copyright 2003-05 John Cowan under the GNU GPL
108

Summary of schema inclusions
• All these must appear (if at all) after any

schema options but before anything else:
– include (incorporate text directly; must

share target namespace)
– redefine (like include, but allows

overriding of type and group declarations)
– import (bring in global declarations from

other target namespaces)

Copyright 2003-05 John Cowan under the GNU GPL
109

Summary of top-level
declarations

• All these must appear after any schema
options or inclusions:
– element
– attribute
– complexType
– simpleType
– group
– attributeGroup

Copyright 2003-05 John Cowan under the GNU GPL
110

Summary of element
declarations

• A name
• Optional substitution and derivation
• Then in braces, one of:

– A content model, with or without mixed
– empty
– A simple type

Copyright 2003-05 John Cowan under the GNU GPL
111

Summary of element
declarations

• Plus any of:
– local element declarations
– local attribute or attribute group declarations
– attribute wildcards
– identity constraints

• Plus an optional fixed or default value

Copyright 2003-05 John Cowan under the GNU GPL
112

Summary of attribute
declarations

• A name, plus:
– a simple type reference
– an optional fixed or default value

Copyright 2003-05 John Cowan under the GNU GPL
113

Summary of complex type
definitions

• A name plus any of the things that an
element declaration can have:
– except a head element for a substitution

group

Copyright 2003-05 John Cowan under the GNU GPL
114

Summary of simple type
definitions

• A name plus one of:
– a simple type name with optional facets
– a simple type specification with optional

facets
– a union simple type
– a list simple type

Copyright 2003-05 John Cowan under the GNU GPL
115

Summary of group definitions
• Model group definitions:

– A name plus a content model
• Attribute group definitions:

– A name plus any of:
• attribute declarations
• attribute wildcards
• references to other attribute groups

Copyright 2003-05 John Cowan under the GNU GPL
116

Summary of notation
declarations

• A name, an optional system identifier (or
URI), and an optional public identifier

• Notation declarations appear in XSD only
for backward compatibility with DTDs

• Notation declarations in DTDs are
obsolescent anyhow

Copyright 2003-05 John Cowan under the GNU GPL
117

DATATYPES

Copyright 2003-05 John Cowan under the GNU GPL
118

XML Schema Datatypes

• A type is a named set of values
• An XML Schema datatype provides a

standardized, machine-checkable
representation of a type

• XML Schema types can be grouped:
– numeric, date, boolean, string,

miscellaneous

Copyright 2003-05 John Cowan under the GNU GPL
119

Decimal Types
• decimal

– integer
• nonPositiveInteger

– negativeInteger
• nonNegativeInteger

– positiveInteger
– unsigned{Long, Int, Short, Byte}

• long, int, short, byte

Copyright 2003-05 John Cowan under the GNU GPL
120

Decimal Types

• long, short, int, and byte are the
same as in Java: 64, 32, 16, 8 bits

• unsignedLong, unsignedShort,
unsignedInt, and unsignedByte
are the obvious unsigned analogues

• All other numeric types are unbounded

Copyright 2003-05 John Cowan under the GNU GPL
121

Floating-point Types

• Only two floating-point types
– float
– double

• IEEE ranges and precisions (same as
Java, all modern hardware)

Copyright 2003-05 John Cowan under the GNU GPL
122

Date Types

• duration
• date, time, dateTime
• gYear, gMonth, gDay,
gYearMonth, gMonthDay

Copyright 2003-05 John Cowan under the GNU GPL
123

Date Types

• Duration
– duration

• Single Time Interval
– dateTime, date, gYear, gYearMonth

• Recurring Time Interval
– time, gMonth, gDay, gMonthDay

Copyright 2003-05 John Cowan under the GNU GPL
124

Date Type Examples

duration P1D PT30M P2M
dateTime 2002-06-17T13:45:00
Date 1776-07-04
Time 17:05:00-05:00
gYear 1984
gMonth --12
gDay ---29
gYearMonth 1917-11
gMonthDay --09-11

Copyright 2003-05 John Cowan under the GNU GPL
125

Boolean Type

• Only two values are legal:
– true (which can also be written 1)

– false (which can also be written 0)

Copyright 2003-05 John Cowan under the GNU GPL
126

String Types
• string

– normalizedString
• token

– language
– NMTOKEN(S)
– Name

» NCName
 o ID, IDREF(S), ENTITY(IES)

Copyright 2003-05 John Cowan under the GNU GPL
127

Miscellaneous Types

• Raw octet types
– hexBinary
– base64Binary

• anyURI
• QName
• NOTATION

Copyright 2003-05 John Cowan under the GNU GPL
128

Syntax of datatype names
• Datatypes are always namespace-

qualified
• Default prefixes:

– xsd: in the RELAX NG compact syntax
– xs: in the W3C compact syntax

• XML syntaxes do not have default
prefixes, but the above forms should be
used by convention

Copyright 2003-05 John Cowan under the GNU GPL
129

FACETS

Copyright 2003-05 John Cowan under the GNU GPL
130

Facets

• Allow the creation of new datatypes by
restricting the existing ones in one or
more ways

• Called parameters in RELAX NG
• Facets can be grouped into families

applicable to datatype families:
– length, value, pattern
– enumeration, whiteSpace

Copyright 2003-05 John Cowan under the GNU GPL
131

General Facet Syntax

• In the RELAX NG compact syntax, all
facets are specified as facetname =
"facetvalue", with explicit quotation
marks

• In the XSD compact syntax:
– Some facets have their own idiosyncratic

ultra-compact syntax
– All other facets are specified as facetname
= facetvalue, with no quotation marks

Copyright 2003-05 John Cowan under the GNU GPL
132

Length Facets

• Applicable to string and miscellaneous
types

• length facet specifies the exact length
• minLength and maxLength facets set

limits; either or both may be used
• lengths of hexBinary and
base64Binary types are measured in
octets, not characters

Copyright 2003-05 John Cowan under the GNU GPL
133

Length Facets

• The XSD compact syntax has a special
representation of length facets based on
its representation of occurrence
indicators
– length = [3] represents a
length of 3

– length = [3,] represents a
minLength of 3

– length = [,5] represents a
maxLength of 5

Copyright 2003-05 John Cowan under the GNU GPL
134

Length Facets

• The XSD compact syntax has a special
representation of length facets based on
its representation of occurrence
indicators
– length = [3,5] represents

simultaneously:
• a minLength of 3
• a maxLength of 5

Copyright 2003-05 John Cowan under the GNU GPL
135

Bounds Value Facets

• Applicable to numeric and date types
• minExclusive and minInclusive

specify a lower bound; either but not
both may be used

• maxExclusive and maxInclusive
specify an upper bound; either but not
both may be used

Copyright 2003-05 John Cowan under the GNU GPL
136

Bounds Value Facets

• The XSD compact syntax also has a
special representation of bounds facets
based on the mathematical
representation of intervals

• Square brackets represent inclusive
bounds (as with lengths), parentheses
represent exclusive ones

• So [-100,+100] bounds the value
between -100 inclusive and +100
inclusive

Copyright 2003-05 John Cowan under the GNU GPL
137

Bounds Value Facets

• You can mix bracket types: [0,100)
represents at least 0 but not more than
or equal to 100

• You can also omit either side of the
interval:
– [10.5,] means at least 10.5
– (,10.5) means less than 10.5

Copyright 2003-05 John Cowan under the GNU GPL
138

Decimal Value Facets

• totalDigits specifies the total
number of significant digits in a
decimal, integer,
(non)PositiveInteger, or
(non)NegativeInteger value

• fractionDigits specifies the
number of fractional digits in a decimal
value

Copyright 2003-05 John Cowan under the GNU GPL
139

Pattern Facet
• Applicable to any type
• Specifies a regular expression that the

data must match
• XML Schema: If multiple pattern

facets are present, the data must match
at least one of them

• RELAX NG: If multiple pattern facets
are present, the data must match all of
them

• In the XSD compact syntax, patterns
are enclosed in slashes

Copyright 2003-05 John Cowan under the GNU GPL
140

whiteSpace facet

• Not applicable in RELAX NG
• Specifies how to handle whitespace in a
string

• Three cases:
– Preserve (use the value as-is)
– Replace (change TAB, CR, LF to a space)
– Collapse (remove leading and trailing

whitespace and collapse runs of
whitespace)

Copyright 2003-05 John Cowan under the GNU GPL
141

enumeration facet

• Not applicable to RELAX NG (use a
choice between values instead)

• Specifies a set of values
• The data must match exactly one of

them
• In the XSD compact syntax, represented

by comma-separated strings in quotation
marks

Copyright 2003-05 John Cowan under the GNU GPL
142

Facets for non-atomic types

• In XSD, you can apply the length,
maxLength, and minLength facets to a
list type, in which case they refer to the
number of items in the list

• In XSD, you can apply the pattern and
enumeration facets to both list types
and union types

Copyright 2003-05 John Cowan under the GNU GPL
143

MORE INFORMATION

http://www.w3.org/TR/xmlschema-0/
http://dret.net/projects/xscs/
http://www.ccil.org/~cowan/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	\
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Datatype Syntax
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143

